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Abstract. Rational decision making depends on what one believes, what one desires, and what one knows. In
conventional decision models, beliefs are represented by probabilities and desires are represented by utilities.
Software agents are knowledgeable entities capable of managing their own set of beliefs and desires, and they
can decide upon the next operation to execute autonomously. They are also interactive entities capable of filtering
communications and managing dialogues. Knowledgeability includes representing knowledge about the external
world, reasoning with it, and sharing it. Interactions include negotiations to perform tasks in cooperative, coor-
dinative, and competitive ways. In this paper we focus on decision-making mechanisms for agent-based systems
on the basis of agent interaction. We identify possible interaction scenarios and define mechanisms for decision
making in uncertain environments. It is believed that software agents will become the underlying technology that
offers the capability of distribution of competence, control, and information for the next generation of ubiquitous,
distributed, and heterogeneous information systems.
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1. Introduction

The rapid development in computer technologies has made it impossible to continue using
the centralized, monolithic programming model that was adequate when treating comput-
ers as isolated entities. Presently, interconnected computer systems are normally distributed
over a wide area leading to distribution of competence, control, and information. There-
fore, for computing to become truly ubiquitous, new distributed, multitask programming
methodologies must be developed. It is believed that distributed, multiagent technologies
offer the capabilities needed. Consequently, there are many projects focusing on multiagent
systems.

Traditional software systems can handle data and information. Data is defined as a se-
quence of quantified or quantifiable symbols. Information is about taking data and putting it
into a meaningful pattern. Knowledge is the ability to use that information. Knowledgeabil-
ity includes representing knowledge about the external world, reasoning with it, and sharing
it. Interactions include the ability to directly communicate or collect data on the other agents.
Software agents are knowledgeable entities capable of managing their own set of beliefs
and desires and they can decide upon the next operations to execute autonomously. They
are also interactive entities capable of filtering communications and managing dialogues.
Various techniques and methodologies to handle the knowledgeability and interactivity
have already been introduced (Jennings 1997, Weiss 1999, Subrahmanian 2000).
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Figure 1. A view of software agent attributes.

When modeling software agents, a popular view is to model them as software components,
i.e., a package with complete encapsulation of its behavior that has only one attribute called
interface(i.e., what they can do).Then the component can only be accessed through its
interface (Figure 1(a)). In this case, the other agents requiring services of a certain software
agent may consult directory and naming services (i.e., agent yellow pages) and use its service
by adhering to the strict rules specified in the interface document. Experience shows that
this limits the scope and applicability of the software agents, in the sense that autonomy
and interactivity may be compromised.

We propose another view in which two more attributes are also specified: agoal list
(i.e., what they want to do) andknowledge(i.e., how to do) that an agent can utilize to
perform tasks autonomously (Figure 1(b)).3 When interacting with the other agents, either
of the goals, interface, and knowledge attributes can be declaredpublic or private.Public
means that the attribute is accessible and readable by the other agents andprivateindicates
otherwise. This leads to a maximum of eight interaction scenarios. On the basis of this
view, a subset of useful and popular agent interaction scenarios are identified (Onjo and
Far, 2001).

3Note that we may also add two more attributes: the thread of control (when) and identity (who). We do not
consider them in this paper.
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party, i.e., goal and knowledge are both public. In cooperation both agents share common
goals.r Coordination:Coordination is revealing the agent goals and the knowledge to the other
party, i.e., goal and knowledge are both public. In coordination, agents have separate
goals.r Loose competition:Loose competition is revealing only the agent goals but masking the
knowledge from the other party, i.e., goals are public and knowledge is private.r Strict competition:Strict competition is revealing neither an agent’s goals nor the knowl-
edge to the other party, i.e., both goals and knowledge are private.

Using this view the agent autonomy can be preserved if a proper decision-making mech-
anism for the agents is devised and implemented. That is, the agent can decide upon the
next task to perform using the current list of goals, interfaces, and knowledge of self and
the other agents interacting with.

2. Decision-Making Techniques for Multiagent Systems

Agents engaged incooperativeandcoordinativetasks can potentially have precise informa-
tion about the other agents goals due to the fact that the goals and knowledge are accessible,
usually through direct communication. Many techniques and methods to handle cooperation
and coordination have already been proposed (Huhns and Singh, 1998). In this paper, we
consider agent decision making in competitive and uncertain environment which normally
arises in the case of competition. In this case, the agent must predict the other agents goals
and this introduces uncertainty to the decision-making model. There are many sources of
uncertainty including

r uncertainty inherent in the problem domain being modeled, andr uncertainty about the outcome of decisions (i.e., risk).

There are a number of decision-making techniques based on uncertain data. A modest
list may include the following: uncertainty management in knowledge-based systems us-
ing certainty factor (Shortliffe, 1979); Bayesian belief networks (BBN) and dynamic BBN
(Pearl 1988, 1990); game theory, including static games of complete information; static
games of incomplete information (static Bayesian game); dynamic games of complete and
perfect/imperfect information; dynamic games of incomplete information (Gibbons, 1992;
Osborne, 1994; Kuhn, 1997; Bierman, 1998); decision-making models under uncertainty
and risk (French 1986); Dempster–Shafer’s Theory of Evidence (Dempster, 1967, Shafer,
1976); Ordered Weighted Averaging (OWA) (Yager, 1988; 1990); and uncertain program-
ming techniques (linear programming, nonlinear programming, multiobjective program-
ming, goal programming, integer programming, multilevel programming, dynamic pro-
gramming, expected value models, chance-constrained programming, dependant-chance
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Figure 2. Overview of a competitive decision-making scenario.

programming) (Liu, 2002). Each of the techniques is appropriate for a class of agent inter-
action scenarios. Below we introduce the appropriate techniques for agent competition.

2.1. OVERVIEW OF MULTIAGENT COMPETITIVE ENVIRONMENT

Figure 2 shows the outline of agent competition. The process for deciding competitive
strategy includes the following steps. First, each agent tries to predict opponent’s strategy.
Second, the agent chooses the best response strategy based on predictions. And finally, each
agent will get a payoff, using a utility function.

From the decision-making viewpoint, since the amount of payoff in extended games is
influenced by the opponent’s moves, predictions of the other agent’s strategies is crucial
to guarantee a stable payoff. Information about opponent’s moves is obviously uncertain.
The law of maximum expected utility, i.e., selecting actions that yield the most preferred
outcomes, given the actions of the opponent (French, 1986) will govern the decision for
each agent.

2.2. MODELING COMPETITIVE ENVIRONMENT

Rational decision making depends on what onebelieves, what onewants(desires), and
what oneknows. In decision models, beliefs are represented byprobabilitiesand desires are
represented byutilities. Moreover, one needs a set of strategies to select from. Two cases
may arise:r Opponent’s goal (preference relation) known:The problem can be reduced to

static/dynamic game with perfect/imperfect information.r Opponent’s goal (preference relation) unknown:The competition scenario can be repre-
sented by extensive form of a game as shown in Figure 3. This is a simple but illustrative
example of agents’ competition model (agent1 versusagent2).
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Figure 3. Example of agent competition scenario.

In this example, we consider thatagent1 does not know the preference relation of
agent2 and thus,agent1 is uncertain about which strategyagent2 might adopt. Here,P1is
an information partition ofagent1 and it is not sure which nodes it stays in (left, right, or
center) withinP1. Under this uncertain environment,agent1 must decide which strategy
to adopt so as to optimize its utility. Therefore,agent1 evaluates itsbeliefover the state of
nature and adopts the strategy which maximizes its expected utility. If all the agents decide
upon strategy in the same way, there is a possibility that it leads to social Bayesian perfect
Nash Equilibria (Kajii and Matsui, 2000).

A question which naturally arises here is how each agent assigns its belief autonomously.
The answer can be achieved by dividing uncertainty into certain levels. Following Keynes
(1883–1946), certainty is divided into three levels according to the amount of information
about the state of nature or given signal observed before choosing among several strategies
(Ichikawa, 1983).

r Level 1: Decision making under certainty. The agent knows exactly what the state of
nature is. In this case, decision making is straightforward. The agent selects the strategy
based on maximum expected utility (French, 1986).r Level 2: Decision making under risk. It is assumed that the agent is not sure what state
of nature is, but it has a probability distribution over the state of nature. In this case, the
agent treats the known probability distribution as its belief and selects the strategy which
again maximizes its expected utility but broadens the notion of value to include risk. In
Section 3 we propose a risk management method to reflect each agent’sattitude toward
risk.r Level 3:Decision making under uncertainty.In this level, it is assumed that the agent
does not know anything about the state of nature except for that it is in some set,
N = {ω1, ω2, . . . , ωn}. In this case, the agent has to assign its belief without using a
probability distribution. According to cognitive psychology, when probability distribu-
tion is not known, people evaluate belief on the basis ofdegree of comfort(i.e., selecting
the one that needs the least effort) ordegree of optimism(i.e., selecting the one that we
think is the most fit). In Section 4 we propose a belief assignment method, which reflects
agent’sdegree of optimism.
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It should be noted that decision making under certainty (Level 1) is actually a special
case of decision making under risk (Level 2).

3. Level 2: Decision Making Under Risk

In the case of decision making under risk, the agent naturally selects a strategy which
maximizes its expected utility. Generally, utility is calculated as expected value of cost
and/or benefit to indicate a general measure of value. However, problem may arise when
expected values of two strategies are the same. In such a case, the attitude toward risk
will play a crucial role. That is, the risk of failure influences decision making. The agent’s
attitude toward risk is categorized into the following three types:r Risk prone: In this case, agents prefer high-risk high-return strategy to low-risk low-return

strategy.r Risk aversion: In this case, agents prefer low-risk low-return strategy to high-risk high-
return strategy.r Risk neutral: If expected value is the same, these strategies always become nondiscrim-
inateable.

A number of models, such as maximin return (Wald, 1950), optimism–pessimism in-
dex (Hurwicz, unpublished discussion paper, 1951), minimax regret (Savage, 1972), and
Laplace’s principle of insufficient reason, all include the attitude toward risk. We define
utility function that reflects the agent’s attitude toward risk by

u(x) = E(x)− ηV(x) (1)

Whereu(x) is a pure benefit when agent adopts some strategy,E(x) is an expected value
when agent adopts some strategy,V(x) is a variance, andη is a coefficient of degree of
risk aversion taking values between−1 and+1. If η is plus, the functionu(x) becomes
risk aversion, because the larger variance (i.e., the larger risk of failure), the smaller utility
becomes. Conversely, ifη is minus, functionu(x) represents risk prone because, the larger
variance, the larger the utility becomes. And ifη is zero,u(x) represents risk neutral,
becauseu(x) is equal to the expected value when the agent adopts some strategy. Using
this method, agents are allowed to select a strategy reflecting attitude toward risk and this
simple representation can be implemented easily (Onjo and Far, 2001).

4. Level 3: Decision Making Under Uncertainty

In the case that the agent has to decide upon the strategy under uncertainty, it has to order
its belief set without using a probability distribution. As mentioned earlier, the problem will
be reduced to evaluating belief on the basis ofdegree of comfortor degree of optimism. The
question is how to quantify each agent’sdegree of optimism.
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To quantify degree of optimism, we use the OWA operator (Yager, 1988). The OWA
operator of dimensionn is defined as a functionF that is associated with a weighting vector
W,

W = (w1, w2, . . . , wn) (2)

such that 0≤ w j ≤ 1 and
∑

j w j = 1; j ∈ {1, . . . ,n} and for any set of valuesa1, . . . ,an

F(a1,a2, . . . ,an) =
∑

j

w j bj (3)

wherebj is the j th largest element in the set{a1, . . . ,an}.
The OWA weights may be viewed as a pseudo-probability distribution (Yager, 1990).

In particular we can vieww j as a probability that of thej th best thing happening. In this
case, weights (pseudo-probability) are assigned not to a particular state of nature, but to a
preference order of the utility. Thus,w1 is the weight assigned to the best utility andwn is
assigned to a worst utility.

Here, another question that naturally arises is how the agent assigns the weights it is
going to use. At the fundamental level, the answer is that a human expert interacting with
the agent subjectively assigns it. But this may be a hard job in autonomous environments.
Thus, we propose a method to assign the weight vector automatically reflectingdegree of
optimismof agents. Using the OWA operator, the degree of optimism is defined below.

Opt(W) =
∑

j

w j (n− j )/(n− 1); n 6= 1 (4)

Using this definition, users of agents subjectively decide upon their degree of optimism
Opt(W). This value is fed into a following linear programming equation:

maximize −
∑

j

w j log2 w j (5)

Subject to Opt(W) =
∑

j

w j (n− j )/(n− 1); n 6= 1

Opt(W) ∈ [0,1]
(6)∑

j

w j = 1

w j ≥ 0 for j = 1,2, . . . ,n

This approach is closely related to the maximum entropy method used in probability theory,
which is a commonly used rationale for selecting a canonical probability distribution from
among a set of relevant ones.

Advantage of this method is that for various cardinalities of OWA, we can consistently
provide weights corresponding to given Opt(W).
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Figure 4. Structure of the DBN.

5. Analyzing Opponents Moves

Using decision-making method mentioned in Sections 3 and 4, the agent can decide upon
optimal strategy on each step. The model involves beliefs represented by probabilities and
desires represented by utilities. However, to get a stable payoff, the agent should reduce un-
certainty by analyzing opponents’ moves and updating its belief dynamically. BBN (Pearl,
1988) is added to the model to represent the knowledge in the form of nodes and causal rela-
tionships among them. BBN is a powerful computational model for representing causality
and reasoning with uncertainty. A special form of BBN, calledDynamic Belief Network
(DBN), is used for the belief updating process. DBN provides a mechanism to foresee the
probability of interest in the next state with regard to the current beliefs. That mechanism is
called probabilistic projection and can be performed by a three-step updating cycle called
roll-up, estimation, and prediction phases (Russel and Norvig, 1995).

The high-level structure of DBN is shown in Figure 4. It is a directed acyclic graph
composed of modeling nodes (E), Sensor nodes (S), decision nodes (A), and utility nodes
(U). Both the decision and modeling nodes have a finite set of states. The utility nodes have
no children and to each utility node is attached a real valued utility function. To each sensor
node a probability value is attached. Each modeling node has a conditional probability table
(CPT).

At the low level, each of the sensor node (S) and modeling node (E) is a DBN on itself.
They are calledsensor DBN modelandstate evolution DBN model, respectively. The role
of the sensor DBN model is to obtain information related to other agent’s strategy and/or
behavior, and next state is estimated by state evolution DBN model based upon agents’
action and prediction of current state. The two models are composed of the following
nodes.r Type of agent (T). To predict other agents’ strategies, an agent has to know other agents’

preference relation. Here,typeis a value which decides each agent’s preference relation.
Specifically,typerepresents each agent’s degree of attitude toward risk, as mentioned in
Section 3. For instance, for an agent having three types (risk prone, risk neutral, and risk
aversion), its type valueT is represented byT = −1, 0, and 1, respectively.
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Table I. Knowledge hirarchy structure

Agent2 knowsAgent1? No Yes Yes No
Agent1 knowsAgent2? Yes Yes No No
State θ1 θ2 θ3 θ4

r Knowledge hierarchy structure (K). For the strategic decision making, an agent must
analyze not only other agents’ types but also theknowledge hierarchy structure(Kajii
and Matsui, 2000). Knowledge hierarchy structure is the hierarchical structure of each
agent’s knowledge such as “whether or not all agents know all agents types,” “whether
or not all agents know ‘all agents know all agents types’,”. . . , etc.
For instance, in case of competition among two agents (agent1 versusagent2), the
knowledge hierarchy structure is defined as follows:

1. whether or notagent1 knows type ofagent2
2. whether or notagent2 knows type ofagent1
3. whether or notagent1knows “whether or notagent2knows type ofagent1own”
4. whether or notagent2knows “whether or notagent1knows type ofagent2own”

We can represent knowledge hierarchy structure of this example into four states (θ1 ∼ θ4)
as shown in Table I. In case of stateθ2, it is said that types of all agent isCommon
Knowledge.
Note that although four states exist, information partitions of each agent (P1 andP2) are

P1 = {(θ1, θ2), (θ3, θ4)} and P2 = {(θ1, θ4), (θ2, θ3)}.
Thus, all we have to do is to compute only two states within the information partition of
each agent.r Belief of belief (B). With analyzing knowledge hierarchy structure mentioned earlier,
we can specify whether the opponent knows my type. Although it is better to analyze “if
opponent does not know my type exactly, how does it misunderstand my type?” Here,
belief of beliefis a concept such as “I believe opponent believes my type isx.” For
example, ifagent1 has three types, its belief of belief is represented byB = −1, 0, and
1, respectively.r State of nature (N). State of nature is strategies of the other agents as mentioned in
Section 2. For example in case of competition between two agents, if the opponent has
three strategies, it is represented byN = {ω1, ω2, ω3}.r Existence of signals (I). It represents whether or not an agent can get signals about other
agent’s strategies. Simply, it is represented by a Boolean variable. Namely,I = Trueor
False.

Considering these modeling elements, the sensor and state evolution models can be
constructed. Example of thesensor modelusing two-slice temporal belief network (2DBN)
is shown in Figure 5.
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Figure 5. Example of sensor model.

Agents get and analyze the signal using sensor model. But the agents may not always
get signals successfully. Therefore, we add an eventO into the sensor model.O is an event
which shows agents obtain signals. And by adding CPT, we can construct the sensor model.
In this example, we set that agents can get signals with a probability of 0.5.

An example of the 2DBN for the state evolution DBN is shown in Figure 6. It represents
the effects of adoption of some strategies as direction of link. In the case of agent competition,
we want to know the probability distribution over states of natureNat timet, denoted byNt .
As shown in Figure 6, value ofNt requires knowingTt−1 andNt−1. Moreover,Nt andBt

are correlated andBt andKt are also correlated. Relations and correlations of each state is
described using the conditional probability. Thus probability distribution of current state of
nature is calculated as follows:

P(Kt , Bt , Nt | St−1) = P(Nt |Bt , St−1)× P(Bt |Kt , St−1)× P(Kt |St−1) (7)

whereSt−1 is a previous state.
And finally, by multiplying probability of getting signals calculated by sensor model and

probability of current state of nature obtained by state evolution model, agent can update
its belief, calculate its utility, and select the strategy that maximizes the utility (Figure 4).

6. Example

Decision models presented earlier can be applied to competition among dealer agents in
the electronic marketplace for a typical contracting scenario. In this scenario, a customer
agent negotiates with a number of dealer agents. Each dealer agent tries to identify customer
needs and takes parts in bidding to win the contract. Risk and uncertainty are integral parts
of business and especially important in this scenario.

To win the contract, a dealer agent must not bid too high because it will fail to get the
contract and loses the time and money spent in preparing the proposal. On the other hand,
if the dealer agent bids much lower than its competitors, it loses again because it obtains
the contract but it has undertaken to fulfill it at a price far lower than necessary. Therefore,
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Figure 6. Example of state evolution model.

to win a contract, the dealer agent must bid high enough to make a profit but low enough to
win simultaneously.

In this example, we assume that a customer agent negotiate with two dealer agents. Both
dealer agents are selling the same product, meaning that there is no product differentiation.
This is a simplified model but expressive enough to explain the ideas. Thus inevitably, the
dealers will fall into the price competition.

Here, we assume each dealer agent has two strategies to sell the products with “High
Price ($40,000)” and “Low Price ($30,000).” We assume that $30,000 is a limitation on
price for both dealer agents. Payoff matrix for this price competition is shown in Table II.
This game environment is analyzed asChicken Gamein economy.

Table II. Payoff matrix for price competition

Agent2

Agent1 High Price Low Price

High price (2, 2) (0, 3)
Low price (3, 0) (−1,−1)
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In the case that, both dealer agents adopt “High price” strategy, possibility to win the
contract is half because of no product differentiation, meaning that both agents’ payoff is
2. In case that dealeragent1 adopts “Low price” and opponent adopt “High price,” dealer
agent1can win the contract and obtains payoff 3, and vice versa. In the case that both agent
adopt “Low price,” since $30,000 is limitation on price, both agents’ benefit will be deficit
because, although they are selling products at low price as much as possible, possibility to
win the contract is very low (at most half). In this case, we assume that both payoffs are−1.

In this game environment, best response strategy is to adopt the different strategy from
their opponents, “Low price, High price” and “High price, Low price.” At the first glance,
it seems that this game is easy to solve, but since opponents’ strategy cannot be pre-
dicted, situation gets quite complicated. To cope with the uncertainty, we apply our pro-
posed models. First, we apply decision-making model on the basis of degree of optimism
introduced in Section 4. For instance, if Opt (W) = 0.7, [w1,w2] = [0.7,0.3]. Thus for
“High price,” expected utility is 0.7× 2+ 0.3× 0= 1.4 and in case of “Low price,”
0.7× 3+ 0.3× (−1)= 1.8. Thus the agent should adopt “Low price.” The plot of ex-
pected utility with changing degree of optimism is shown in Figure 7.

As it is shown, until Opt(W) < 0.5, dealer agent adopts “High price” and when Opt(W) >
0.5, then “Low price” is adopted. This is because, since “Low price” has an aspect of high
risk-high return, in case that dealer agent is optimistic (Opt(W) > 0.5), it prefers “Low
price” but when it becomes pessimistic (Opt(W) < 0.5), it prefers “High price” which has
a character oflow risk low return. This experimental result proves that using the proposed
model, interactive decision making is possible even though probability distribution over the
competitors is completely unknown.

Figure 7. Expected utility with degree of optimism.
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Figure 8. Expected utility with degree of risk aversion.

The next example is related to the risk management methodology presented in Section 3.
We assume that, dealeragent1 believes opponent adopts “High price” with probability of
0.6 and “Low price” with 0.4. The utility with changing degree of risk aversion (η) is shown
in Figure 8. When dealer agent’s preference is risk aversion (η > 0), it prefers “High price”
strategy which has a character of low risk low return, because utility of “High price” is
higher that that of “Low price.” And in case that dealer agent’s preference becomes risk
prone (η≤ 0), high risk high return strategy, i.e., “Low price,” is adopted. This experimental
example shows that our risk management model allows agents make decision with reflection
of users’ opinion within a simple representation.

7. Conclusions

Next generation of ubiquitous, distributed, and heterogeneous information systems rely on
software agent technology. Software agents are knowledgeable entities capable of manag-
ing their own set of beliefs and desires and they can decide upon the next execution steps
autonomously. They are also interactive entities capable of filtering communications and
managing dialogues. Interactions among agents in a society of software agents can be learnt
by closely investigating interactions in human societies. In this paper, we devised a realistic
set of interaction scenarios for software agents with the focus on decision making in uncer-
tain environments. Decision-making methods in the presence of both risk and uncertainty
were introduced and a model and a method for belief update were presented. Because of the
introduction of degree of risk and optimism, agents can select a competitive strategy even if
probability of competitor’s move is completely unknown. From the viewpoint of behavioral
psychology, utilization of degree of risk and optimism is natural and from engineering point
of view it is practical.
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